

Computer Science Paper-I Data Structures and Algorithms-I [CORE COURSE]

Semester – III	Credits: 2	Subject Code: BS32101	Lectures: 36

Course Outcomes:

At the end of this course, the learner will be able to:

- Illustrate different methods of organizing the large amount of data.
- Summarize well-organized data structures in solving various problems.
- Compare and contrast the usage of various data structures in problem solving.
- Demonstrate algorithms to solve problems using appropriate data structures.

Un	it 1: Introduction to Data Structures and Algorithm Analysis	4
•	Introduction	
	Need of Data Structure	
	 Definitions -Data and information, Data type, Data object, ADT, Data Structure 	
	 Types of Data Structures 	
	Algorithm analysis	
	 Space and time complexity, Graphical understanding of the relation between different functions of n, examples of linear loop, logarithmic, quadratic loop etc. 	
	 Best, Worst, Average case analysis, Asymptotic notations(Big O, Ome Theta Θ), Problems on time complexity calculation 	ga Ω,

Ur	nit 2	2: Array as a Data Structure	10
•	A	DT of an array, Operations	
•		ray applications -Searching	
	0	Sequential search, variations -Sentinel search, Probability search, ordered list search	
	0	Binary Search	
	0	Comparison of searching methods	
•	Sc	orting Terminology-Internal, External, Stable, In-place Sorting	
	0	Comparison Based Sorting-Lower bound on comparison based sorting, Methods-Bubble Sort, Insertion Sort, Selection Sort, Algorithm design strategies -Divide and Conquer strategy, Merge Sort, Quick Sort, complexity analysis of sorting methods.	
	0	Non Comparison Based Sorting: Counting Sort, Radix Sort, complexity analysis.	
	0	Comparison of sorting methods	

Unit 3: Linked List	10
Introduction	
 Dynamic implementation of Linked List 	

Board Of Studies	Name	Signature
Chairman (HoD)	Ms. Ashwini Kulkarni	dlw -
	2	

Types of Linked List -Singly, Doubly, Circular

- Operations on Linked List -create, traverse, insert, delete, search, sort, reverse, concatenate, merge, time complexity of operations.
- Applications of Linked List –polynomial representation, Addition of two polynomials
- Generalized linked list –concept, representation, multiple-variable polynomial representation using generalized list.

Unit 4: Stack	6
• Introduction	
 Operations –init(), push(), pop(), isEmpty(), isFull(), peek(), time complexity of operations. 	
 Implementation-Static and Dynamic with comparison Applications of stack 	
 Function call and recursion, String reversal, palindrome checking 	
 Expression types -infix, prefix and postfix, expression conversion and evaluation(implementation of infix to postfix, evaluation of postfix) 	

Ur	nit 5: Queue	6
•	Introduction	
•	Operations -init(), enqueue(), dequeue(), isEmpty(), isFull(), peek(),time complexity of operations, differences with stack.	
•	Implementation-Static and Dynamic with comparison	
•	Types of Queue-Linear Queue, Circular Queue(with implementation), Priority	
	Queue, Double Ended Queue	
•	Applications of Queue	

*Contact Hours:12

Recommended Books:	
 DebasisS.(2009). Classic Data Structures. Prentice Hall India Pvt. Ltd. Horowitz E., SahniS., Anderson-Freed s. (2008). Fundamentals of Data Structures in C. Universities Press. KamthaneA.N.(2009). Introduction to Data Structures in C. Pearson Education. 	
• Wirth N. (1976). Algorithms and Data Structures. Pearson Education.	

Board Of Studies	Name	Signature
Chairman (HoD)	Ms. Ashwini Kulkarni	Overs

Board Of Studies	Name	Signature(In white cell)
Chairman (HoD)	Ms. Ashwini Kulkarni	012 6/3/21	
Faculty	Ms. Alka Kalhapure		Alla 12021
Faculty	Ms.Shubhangi Jagtap	Stubbarg 06103121	
Subject Expert (Outside SPPU)	Dr. Manisha Divate	66103	No quate 615/14
Subject Expert (Outside SPPU)	Mr. Aniket Nagane	613/21	
VC Nominee (SPPU)	Dr. Manisha Bharambe		Mehanambe 06/163/21
Industry Expert	Ms.SnehalBiyala	Qullam 6/3/21	
Alumni	Ms. Mamta Choudhary		Jun 6/3/21

Board Of Studies	Name	Signature
Chairman (HoD)	Ms. Ashwini Kulkarni	() lus