

St. Mira's College For Girls, Pune (S.Y.B.Sc(C.S) 2021-2024)

Computer Science Paper-I Data Structures and Algorithms-II [CORE COURSE]

Semester – IV Credits: 2 Subject Code: BS42101 Lectures: 48

Course Outcomes:

At the end of this course, the learner will be able to:

- Illustrate different methods of organizing the large amount of data
- Summarize well-organized data structures in solving various problems
- Compare and contrast the usage of various data structures in problem solving
- Demonstrate algorithms to solve problems using appropriate data structures

Uı	nit 1: Algorithm Design Techniques	6
	Brute-force or exhaustive search Divide and Conquer Greedy Algorithms	
•	Dynamic Programming Backtracking	

Unit 2: Tree	10
Concept and Terminologies	
Types of Binary trees -Binary tree, skewed tree, strictly binary tree, complete	
binary tree, expression tree, binary search tree, Heap	
Representation –Static and Dynamic	
• Implementation and Operations on Binary Search Tree -Create, Insert, Delete, Search, Tree traversals—preorder, inorder, postorder (recursive implementation).	
Level-order traversal using queue, Counting leaf, non-leaf, counting nodes with	
degree 1 ,counting nodes with degree 2 and total nodes, Copy, Mirror.	
Applications of trees	
 Heap sort, implementation 	
 Huffman encoding(implementation using priority queue) 	

Unit 3: Efficient Search Trees	6
 Terminology: Balanced trees -AVL Trees, Red Black tree, splay tree, Lexical search tree -Trie AVL Tree-concept and rotations 	
 Red Black trees-concept, insertion and deletion. Multi-way search tree-B and B+ tree -Insertion, Deletion 	
Binary Index Tree and Segment Tree	

Board Of Studies	Name	Signature
Chairman (HoD)	Ms. Ashwini Kulkarni	410

St. Mira's College For Girls, Pune (S.Y.B.Sc(C.S) 2021-2024)

Unit 4: Graph	10
Concept and terminologies	
Graph Representation – Adjacency matrix, Adjacency list, Inverse Adjacency	
list, Adjacency multilist	
Graph Traversals –Breadth First Search and Depth First Search (with	
implementation)	
Applications of graph	
 Topological sorting 	
 Minimal Spanning Trees (Prim's and Kruskal's algorithm) 	
 Single source shortest path -Dijkstra's algorithm 	
 All pairs shortest path -Floyd Warshall algorithm 	

Unit 5: Hash Table	4
• Concept of hashing	
 Terminologies –Hash table, Hash function, Bucket, Hash address, collision, synonym, overflow etc. 	
 Properties of good hash function 	
 Hash functions: division function, MID square, folding methods 	

^{*}Contact Hours:12

R	Recommended Books:	
•	Debasis S.(2009). Classic Data Structures . Prentice Hall India Pvt. Ltd. Horowitz E., Sahni S., Anderson-Freed s. (2008). Fundamentals of Data	
	Structures in C. Universities Press.	
•	Kamthane A.N.(2009). <i>Introduction to Data Structures in C.</i> Pearson Education. Wirth N. (1976). <i>Algorithms and Data Structures</i> . Pearson Education.	

Board Of Studies	Name	Signature
Chairman (HoD)	Ms. Ashwini Kulkarni	din

Board Of Studies	Name	Signature(In white cell)
Chairman (HoD)	Ms. Ashwini Kulkarni	0/0/ 6/3/21	
Faculty	Ms. Alka Kalhapure		Alla 06/03/2021
Faculty	Ms.Shubhangi Jagtap	Shuddag 66103121	
Subject Expert (Outside SPPU)	Dr. Manisha Divate		10 mit
Subject Expert (Outside SPPU)	Mr. Aniket Nagane	6 3 2	
VC Nominee (SPPU)	Dr. Manisha Bharambe		proharambe
Industry Expert	Ms. Snehal Biyala	Bulani 613/21	
Alumni	Ms. Mamta Choudhary		Jum 6/3/21

Board Of Studies	Name	Signature
Chairman (HoD)	Ms. Ashwini Kulkarni	110