

Computer Practical Practical on Data Structures and Algorithms I and Software Engineering [CORE COURSE]

G		Tar large sales	
Semester – III	Credits: 2	Subject Code: BSP32108	Lectures: 48
		Subject Code. BSI 52100	Lectures, 40

Course Outcomes:

At the end of this course, the learner will be able to:

- Illustrate different methods of organizing the large amount of data
- Summarize well-organized data structures in solving various problems
- Compare and contrast the usage of various data structures in problem solving
- Demonstrate algorithms to solve problems using appropriate data structures

ection 1	: Data Structures and Algorithms I	28
Assign	nment1:Searching Algorithms	
0	Implementation of searching algorithms to search an element using:	
	Linear Search, Sentinel Search, Binary Search (with time complexity)	
Assign	nment 2:Sorting Algorithms -I	
0	Implementation of sorting algorithms: Bubble Sort, Insertion Sort, Selection Sort	
Assign	nment 3:Sorting Algorithms -II	
0	Implementation of sorting algorithms: Quick Sort, Merge Sort,	
	Counting Sort	
Assign	nment 4:Singly Linked List	
0	Dynamic implementation of Singly Linked List to perform following operations: Create, Insert, Delete, Display, Search, Reverse	
0	Create a list in the sorted order.	
Assign	nment 5:Doubly Linked List	
0	Dynamic implementation of Doubly circular Linked List to perform following operations: Create, Insert, Delete, Display, Search	
Assign	nment 6:Linked List Applications1	
0	Merge two sorted lists. Addition of two polynomials in a single variable.	
Assign	nment 7:Stack	
0	Static and Dynamic implementation of Stack to perform following operations: Init, Push, Pop, Peek, Isempty, Isfull	
Assign	nment 8:Applications of Stack	
0	Implementation of an algorithm that reverses string of characters using stack and checks whether a string is a palindrome.	
0	Infix to Postfix conversion.	
0	Evaluation of postfix expression.	
	nment 9:Linear Queue	
0	Static and Dynamic implementation of linear Queue to perform	
	following operations: Init, enqueue, dequeue Peek, IsEmpty, IsFull.	

Board Of Studies	Name	Signature
Chairman (HoD)	Ms. Ashwini Kulkarni	din

St. Mira's College For Girls, Pune (S.Y.B.Sc(C.S) 2021-2024)

tion 2: Assignments for Software Engineering mini Project	8
 Prepare detailed statement of problem for the selected mini project Identify suitable process model for the same. 	
 Develop Software Requirement Specification for the project. Identify scenarios and develop UML Use case 	
Other artifacts: Class Diagram, activity diagram, sequence diagram, component diagram and any other diagrams as applicable to the project	

*Contact Hours: 36+ 12

Recor	nmended Books:	
•	Debasis S.(2009). Classic Data Structures . Prentice Hall India Pvt. Ltd.	
	Horowitz E., Sahni S., Anderson-Freed s. (2008). Fundamentals of Data Structures in C. Universities Press.	
•	Kamthane A.N.(2009). <i>Introduction to Data Structures in C.</i> Pearson Education.	
•	Wirth N. (1976). Algorithms and Data Structures. Pearson Education.	

Board Of Studies	Name	Signature(In white cell)
Chairman (HoD)	Ms. Ashwini Kulkarni	dle 6/3/21
Faculty	Ms. Alka Kalhapure	Dia 12021
Faculty	Ms.Shubhangi Jagtap	Shubhaver 106/03/21
Subject Expert (Outside SPPU)	Dr. Manisha Divate	11 Suet 6/3/21
Subject Expert (Outside SPPU)	Mr. Aniket Nagane	6/3/21
VC Nominee (SPPU)	Dr. Manisha Bharambe	Moharante G/3/21
Industry Expert	Ms. Snehal Biyala	Bulany: 3/21
Alumni	Ms. Mamta Choudhary	Jun 6 03/21

Board Of Studies	Name	Signature
Chairman (HoD)	Ms. Ashwini Kulkarni	din -