

Semester II	Credits: 2	Subject Code: BS22005	Lectures: 40
Semester II	Credits. 2	Subject Code. DS22003	Lectures . 40

Course Outcomes:

At the end of this course, the learner will be able to:

- Calculate and interpret the correlation between two variables.
- Represent graphically and calculate the simple linear regression and non-linear regression
 equations for a set of data. Interpret the results of bivariate regression and correlation
 analysis, for forecasting.
- Calculate multivariate regression for three variables. Interpret the results of multivariate regression for forecasting.
- Analyze the trend in time series and how to remove it.

Unit 1: Correlation (For ungrouped data)	
 Concept of bivariate data, scatter diagram, its interpretation, concept of correlation, positive correlation, negative correlation, zero correlation. 	
 Karl Pearson's coefficient of correlation, properties of correlation coefficient, Interpretation of correlation coefficient, coefficient of determination with interpretation. 	
 Spearman's rank correlation coefficient (formula with and without ties). Numerical problems. 	

Unit 2: Regression (for ungrouped data)	
 Concept of linear and nonlinear regression. Illustrations, appropriate situations for regression and correlation. 	
 Linear regression: Fitting of both lines of regression using least square method. 	
 Concept of regression coefficients. 	
• Properties of regression coefficients: bxy· byx= r2,	
bxy* byx ≤ 1 , bxy= r (σ x / σ y) and byx= r (σ y/ σ x).	
Nonlinear regression models: Second degree curve, exponential curves of the	
type $Y=$ abx and $Y=$ axb.	
 Numerical problems related to real life situations. 	

Unit 3: Multiple Regression and Multiple, partial Correlation (For TrivariateData)	10
Concept of multiple regressions, Yule's Notations.	
Fitting of multiple regression planes. [Derivation of equation to the plane of regression of X1 on X2 and X3 is expected. Remaining two equations to be written analogously.]	
Concept of partial regression coefficients, interpretations.	
Concept of multiple correlation: Definition of multiple correlation coefficient and its formula.	

Board of studies	Name	Signature
Chairman(HoD)	Anjali Kale, St. Mira's College for Girls, Pune	Hy

U	nit 4: Time series	08
•	Meaning and utility	00
•	Components of time series	
•	Additive and multiplicative models	1
•	Methods of estimating trend: moving average method, least squares method and exponential smoothing method (with graph and interpretation). Numerical problems related to real life situations.	

Recommended Text Books:

- Gupta S. C. and Kapoor V. K. 1987, Fundamentals of Applied Statistics (3rd Edition)
 S. Chand and Sons, New Delhi.
- Kulkarni M.B., GhatpandeS.B., Gore S.D. 1999, Common Statistical Tests, Satyajeet Prakashan, Pune
- Kulkarni M.B., Ghatpande S.B. 2007, Introduction to Discrete Probability and Probability Distributions SIPF Academy
- Sarma K.V.S. 2001 Statistics Made Simple. Do it Yourself on P.C. Prentice Hall

Reference Books:

- Box and Jenkin, Time Series Analysis, 4th Edition, Wiley, 2008.
- Brockwell and Davis, Time Series Methods, Springer, 2006.
- Douglas C. Montgomery, Peck Elizabeth A. Introduction to Linear Regression Analysis, G.
 Geoffrey Vining, Wiley
- Gupta and Kapoor, Fundamentals of Applied Statistics (3rd Edition), S. Chand and Sons, New Delhi, 1987.

Board of studies	Name	Signature	e (In white cell)
Chairman(HoD)	Ms.Anjali Kale	JAN 21/7/20	(in white cen)
Faculty	Ms. Amrita Basu		13 asu 21/2/
Subject Expert (Outside SPPU)	Dr. Sharvari Shukla,	210/200 21/7/10	
Subject Expert (Outside SPPU)	Dr. Suresh Pathare		Tolars.
V.C. Nominee(SPPU)	Dr. Mohan Kale	17 12/20 ·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Industry Expert	Dr. Saikat Roy	- 411	Sairat Roy
Alumni	Anuja	Anuja	217120

Board of studies	Name	C:
Chairman(HoD)	775-17-17-17-17-17-17-17-17-17-17-17-17-17-	Signature
(TIOD)	Anjali Kale, St. Mira's College for Girls, Pune	Hele

Statistics Paper-II Continuous probability distributions and testing of hypothesis [CORE COURSE]

Semester II	Credits:2	Subject Code: BS22006	Lectures: 40

Course Outcomes:

At the end of this course, the learner will be able to:

Apply the knowledge of standard continuous probability distributions to solve real life problems by calculating probabilities.

- · Apply the concepts and definitions related to testing of hypothesis.
- Perform Test of Hypothesis for a population parameter for single sample and two sample cases. Understand the concept of p-values.
- To generate model sample from given distributions.
- Apply the knowledge of concepts of hypothesis testing, parametric and non-parametric tests in research methodology at higher level studies and applications.

Unit 1: Standard Continuous Probability Distributions	10
• Uniform Distribution: statement of p.d.f., mean, variance, nature of probability curve. Theorem (without proof): The distribution function of any continuous r.v. if it is invertible follows U(0, 1) distribution	
• Exponential Distribution: statement of p.d.f. of the form,	
• $f(x) = (1/\theta)$ e(-x/ θ), mean, variance, nature of probability curve, lack of memory property.(with proof)	
• Parato distribution: Form of p.d.f. $f(x) = \alpha / x(\alpha+1)$; $x \ge 1$, $\alpha > 0$. Mean, variance, symmetry, applications	
 Normal Distribution: statement of p.d.f., identification of parameters, 	
nature of probability density curve, standard normal distribution, symmetry,	
distribution of aX+b, aX+bY+c where X and Y are independent normal	
variables, computations of probabilities using	
normal probability table, normal approximation to binomial and Poisson	
distribution, central limit theorem (statement only), normal probability plot. Box	
Muller transformation.	
Numerical problems related to real life situations.	

Unit 2: Concepts and definitions related to testing of hypothesis	
Concepts and definitions related to testing of hypothesis	
 Definitions: population, statistic, SRSWR, SRSWOR, random sample from a probability distribution, parameter, statistic, standard error of estimator. 	D.
 Concept of null hypothesis and alternative hypothesis, critical region, level of significance, type I and type II error, one sided and two side dtests, p-value. 	

Board of studies	Name	Signature ,
Chairman(HoD)	Anjali Kale, St. Mira's College for Girls, Pune	ARI

Uı	nit 3: Parametric and Non-parametric Tests	20
•	Large Sample Tests	
	ο Ho: $\mu = \mu$ oVs H1: $\mu \neq \mu$ o (two sided tests)	
	Ho: $\mu 1 = \mu 2 \text{ Vs H} 1$: $\mu 1 \neq \mu 2$ (two sided tests)	
	• Ho: $P = Po Vs H1$: $P \neq Po$ (sided and two sided	
	tests)Ho: P1 = P2 Vs H1: P1≠P2 (two sided tests)	
	 Test based on F- distribution: F-test for testing significance of equality of two population variances. 	
•	Tests based on t –distribution: Ho: $\mu 1 = \mu 2$ Vs H1: $\mu 1 \neq \mu 2$, $\mu 1 < \mu 2$, $\mu 1 > \mu 2$ (One	
	sided and two sided tests), Paired t-test.	
•	Tests based on Chi square distribution	
•	Chi-square test for goodness of fit	
•	Test for independence of attributes (mxn and 2x2)	
•	Kolmogorov - Smirnov test	
•	Run test for testing randomness of the sample and sign test for testing symmetry of	
	the sample	
•	Numerical problems related to real life situations.	

Unit 4: Simulation	
 Introduction, concept of simulation, random numbers, pseudo random numbers, Advantages, Disadvantages of Simulation. Applications 	
 Methods of simulation, Linear congruential generator and simulation from continuous Uniform, Exponential and Normal Distribution. 	

Recommended Text Books:

- Gupta S. C.and Kapoor V. K. 1987, Fundamentals of Applied Statistics (3rd Edition) S. Chand and Sons, New Delhi.
- Kulkarni M.B., GhatpandeS.B., Gore S.D. 1999, Common Statistical Tests, SatyajeetPrakashan, Pune
- Kulkarni M.B., Ghatpande S.B. 2007, Introduction to Discrete Probability and Probability Distributions SIPF Academy
- Sarma K.V.S. 2001 Statistics Made Simple. Do it Yourself on P.C. Prentice Hall

Reference Books:

- Agarwal B. L., Programmed Statistics, New Age International Publishers.
- Freund J.E., Modern Elementary Statistics, Pearson Publication, 2005.
- Ghatpande S.B., Gore S.D., Kulkarni M.B., Common Statistical Tests Satyajeet Prakashan, 1999.
- Law A. M. and Kelton W.D., Simulation Modeling and Analysis, Tata McGraw Hill, 2007.
- Medhi J., Statistical Methods (An Introductory Text), New AgeInternational 1992.
- Mukhopadhyay P., Mathematical Statistics (3rdEdition), Books And Allied (P), Ltd., 2015.
- Trivedi K.S., Probability, Statistics, Design of Experiments and Queuing Theory with Applications of Computer Science, Prentice Hall of India, New Delhi, 2001.

Board of studies	Name	Signature	
Chairman(HoD)	Anjali Kale, St. Mira's College for Girls, Pune	Har	

SXSI. MIRA

Board of studies	Name Ms. Anjali Kale	Signature (In white cell)	
Chairman		HMW 21/2/20	
Faculty	Ms. Amrita Basu	A3aree 2	
Subject Expert (Outside SPPU)	Dr. Sharvari Shukla,	210/4001/2/14/200	
Subject Expert (Outside SPPU)	Dr. Suresh Pathare	Taine	
V.C. Nominee(SPPU)	Dr. Mohan Kale	Mal 17120.	
Industry Expert	Dr. Saikat Roy	Sairest Roy	
Alumni	Ms. Anuja	Anuja 30 21 71 10	

Name	Signature	
Anjali Kale, St. Mira's College for Girls, Pune	HARL	