Numerical Analysis

Semester: III	Subject Code: BS31604	Lectures: 60	

Objectives:

The syllabus aims in equipping the students with,

- An ability to develop the skills of numerical methods and knowledge about convergence of Numerical Methods
- An ability to apply numerical techniques to solve mathematical problems
- An understanding of the wide nature of the subject and applications in different disciplines
- The capacity to represent the given information in the mathematical form using mathematical techniques and draw the relevant conclusion
- An ability to inculcate a positive attitude towards Mathematics and enjoy the triumph of solving interesting problems in different areas of the subject

Unit 1: Errors	2
 Introduction Accuracy of Numbers Errors ➤ Types of Errors A General Formula for Error 	•

Unit	2: Algebraic and Transcendental Equations	12
:	Introduction Location of Roots Methods to find the Roots Procedure for Regula- Falsi Method (The method of false positions) Convergence of False Position Method Newton-Raphson's Method Procedure for the Newton - Raphson's Method	
	 Convergence of Newton-Raphson's Method System of linear equations Gauss Seidel method Gauss Jacobi Method 	

Unit 3: Calculus of Finite Differences	8
 Introduction 	
 Forward Difference (Δ) ,Backward Difference (V) and Shift Operator (E) 	Ξ)
 Central Difference (δ) and Average Operator (μ) 	
 Fundamental Theorem on Difference of Polynomial 	
 Estimation of Error by Difference Table 	
Technique to Determine the missing Term	
Unit 4: Interpolation with Equal Interval	6
Introduction	
Assumptions of interpolation.	
Newton - Gregory Formula for Forward Interpolation	
 Newton - Gregory Formula for Backward Interpolation 	

Unit 5: Interpolation with Unequal Interval	8
Introduction.	
 Lagrange's Interpolation Formulae 	-
 Divided Differences 	
 Newton's Divided Difference Formula (Without proof) 	

Unit 6: Numerical Differentiation	4
• Introduction.	
 Newton's Forward Differentiation Formulae 	*
 Newton's Backward Differentiation Formulae 	

Unit 7: Numerical Integration	
Introduction.	
 General Quadrature Formula (For Equidistant Argumen 	ts)
Trapezoidal Rule	
• Simpson's 1/3 rd Rule	
• Simpson's 3/8 th Rule	
Euler- Maclaurin's Formula	

*Contact hours - 12 hours

Reference Books:

- 1. S. S. Sastry, *Introductory Methods of Numerical Analysis*, 4th edition, Prentice Hall of India, 1999. Sections: 1.3, 1.4, 2.1, 2.3, 2.5, 3.3, 3.4, 3.6, 3.9, 3.10, 5.1, 5.2, 5.4, 5.4.1–5.4.3, 5.5, 6.4
- 2. H. C. Saxena, Finite Differences and Numerical Analysis, S. Chand and Company.
- 3. K.E.Atkinson, An introduction to Numerical Analysis, Wiley Publications.
- 4. John Mathews, *Numerical Methods for Mathematics, Science and Engineering*, 2nd Edition, Prentice Hall India.
- 5. E. Balgurusamy, Numerical Methods, Tata McGraw Hill Publications. 1999.

