e Taylor & Francis

Linear and Multilinear Algebra

ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: https://www.tandfonline.com/loi/glmaz20

Matrices over non-commutative rings as sums of
powers

S. A. Katre & Deepa Krishnamurthi

To cite this article: S. A. Katre & Deepa Krishnamurthi (2020): Matrices over non-commutative
rings as sums of powers, Linear and Multilinear Algebra

To link to this article: https://doi.org/10.1080/03081087.2020.1748856

@ Published online: 02 Apr 2020.

\
@ Submit your article to this journal (£

A
& View related articles &'

@ View Crossmark data ('

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=gima20

Yo
Friacipal locharge

St. Mize's Collegs for Gixls




LINEAR AND MULTILINEAR ALGEBRA e Taylor & Francis

https://doi.org/10.1080/03081087.2020.1748856 I Ak

W) Cnack for updates

Matrices over non-commutative rings as sums of powers

S. A. Katre @2 and Deepa Krishnamurthi?

?Lokmanya Tilak Chair, Savitribai Phule Pune University, Pune, India; ®St. Mira's College for Girls, Pune, India

ABSTRACT ARTICLE HISTORY

Let R be non-commutative ring with unity and n = p > 2, p prime. Received 6 February 2020
In this paper, we prove that an n x n matrix over R is the sum of pth  Accepted 18 March 2020
powers if and only if its trace can be written as a sum of pth powers COMMUNICATED BY
and commutators modulo pR. This extends the results of L. N. Vaser- M. Chebotar

stein {p = 2) and S. A. Katre, Kshipra Wadikar (p = 3). We also obtain
necessary and sufficient conditions for a matrix over R to be written
as a sum of fourth powers whenn > 2.
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1. Introduction

Carlitz showed as a solution to a problem proposed in Canadian Mathematical Bulletin that
every2 X 2 integer matrix is a sum of at most 3 squares (see [1]). Initial work related to inte-
ger matrices and matrices over commutative rings as sums of squares can be found in [2,
3]. Wadikar and Katre [4] proved that every integer matrix is a sum of four cubes. Richman
(5] studied Waring’s problem for matrices over commutative rings as sums of kth powers.
Katre and Garge [6] gave generalized trace condition for a matrix over a commutative ring
to be a sum of kth powers.

All our rings are associative. By a non-commutative ring, we mean a ring with unity
which is not necessarily commutative. In this paper, R will be a non-commutative ring,
and My (R) will denote the ring of n x n matrices over R. For a non-commutative ring R,
Vaserstein proved that a matrix of size n > 2 over R is a sum of squares if and only if its
trace is a sum of squares modulo 2R (see [7]). Recently, Katre and Wadikar proved that a
matrix of size n > 2 over R is a sum of cubes if and only if its trace is a sum of cubes and
commutators modulo 3R (see [8]). In this paper, in the context of Waring’s problem for
matrices, we obtain such a result for pth powers when n > p > 2, p prime. We also obtain
an analogue of this result for fourth powers for n > 2. For both these results, we use the
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2 (@) S.A KATRE AND D. KRISHNAMURTHI

following general trace condition for a matrix over a non-commutative ring to be a sum of
kth powers ([8], Theorem 3.2).

Theorem A (Katre, Wadikar): Let n,k > 2 be integers and A € M,(R). A is a sum of
kth powers of matrices in M, (R) if and only if trace(A) is a sum of traces of kth powers of
matrices in M, (R).

Notations: Ej;: The n x n matrix whose (i, j)th entry is 1 and other entries are 0. Ej;:
The p x p matrix whose (i,j)th entry is 1 and other entries are 0. C(ay,az,. .., ak) =
ayaz---ay + axas---aray +---+arayaz - --ap_y, where ay,as,....ax € R, is called
a cyclic sum of length k. [x,y] = xy— yx is called the commutator of x and y.
Note that —C(ay,aa, . ..,ak) = C(—a1, a2, . ..,ax) is a cyclic sum and —[x,y] = [—x,¥]
commutator.

2. Matrices as sums of pth powers

Proposition 2.1: For aj,as,...,ax € R, the cyclic sum C(ay,az,...,ax) is a sum of
commutators modulo kR.

Proof: Observethataa; ---ag +azas---aga) + - -- -+ agayazas - - - ax_) = (aza3 - - - ax)
ay — aj(azas - - - ag) + (asaq - - - ag)(a1az) — (a1az)(azas - - -ap) + - - + alayaz - - -
ag—1) — (@142 - - ag—1)ax + kayaz - - - ax = [az83 - - - a, a1] + [azaq - - - a, aax] + - +
lak, a1az - - - ag—1] + kayaz - - - ag.

We also consider the action of the cyclic group generated by o = (1,2,...,k) € S, the
permutation group on k symbols, on the set of k-tuples of elements of a set. This action
is defined by o (a),az,...,ak) = (a2, a3,...,ak a1). If k = p is a prime, then, since the
number of elements in the orbit of any p-tuple divides p = order of the group (o), the
orbit has 1 or p elements. Hence if at least two of ay, az, . . ., ap are unequal, the orbit has
exactly p elements. |

Proposition 2.2: If R is a non-commutative ring and n > p > 2, p prime, then for A €
M, (R), trace(AP) is the sum of pth powers of diagonal elements of A and cyclic sums
C(ay, aa,...,ap) withay, az,...,ap € R.

Proof: IfA = (aj), then trace(A?) =37\ j, <u Bjrhy@iajs * * * Bjpir = Doimt G + 25y fovnjp)eB
aj,j>Qjs - - - @j,j, where B s the set of all (ji, ja, . . ., jp) for which at least two of ji, jz, . - .. Jp
are unequal. Since p is a prime, for (j1,j2, .. .,jp) € B, the orbit of (j1,j2s .. ., jp) under the
cyclic change, i.e. the action of the cycle o = (1,2,...,p) € Sp, has p elements. Thus, there
are p distinct p-tuples obtained from cyclic changes in (j1, j2, . - . , jp), and they together give
rise to C(aj,jp» Ajsjy» - - - » Ajyjy ). All such cyclic sums corresponding to different orbits give
rise to the second sum. |

Theorem 1: Let n > p > 2, p prime, be integers. Let Ty = Tp,n be the set of those elements
of R that can be expressed as sums of traces of pth powers of n x n matrices over R.

(i) Fora,ay,ay,...,ap € R, the cyclic sum C(ay, a3, ... »ap) € Tp. Alsopa € Tp,aP € Tp.




(ii)
(iii)
(iv)

(v)
(vi)

(vii)
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iy = {Z(m,az.....ap)és C(ay, az,...,ap) + Z}:l cj-'! 1>1, S is a finite subset of
RP,ajceR1<i<pl<j=<l).

Tp ={X(apaz...apes Cla1,2, ... ap) + cP| Sisa finite subset of RP,aj,c € R,1 =i <
p}

Ty = {CL (@b — bjap) + Lj1 § +priapbjcpr €R g2 L 12 1)

Ty = {¥,L (ajbj — bja) + & + prl apbjcr e R g2 1, 12 1).

A matrix A € M,(R) is a sum of pth powers if and only if trace(A) is a sum of pth
powers and commutators modulo pR if and only if trace(A) is a sum of a pth power and
commutators modulo pR.

Vaserstein ([7], Theorem 1): A matrix A € My(R) is a sum of squares if and only if
trace(A) is a sum of squares modulo 2R.

Proof: (i) Let E:j be the p x p matrix as in Section 1 and On—p be the zero matrix

(ii)
(iii)

(iv)

(v)
(vi)
(vii)

of order n—p. Let F=aE, +azEy; + -+ +ap_1E'_Lp + apE;,_,. Then, as in
the proof of Proposition 2.2, C(ay,a3,...,8p) = trace(FP) = trace(F @ On—p)F.
Hence C(ay, 4z, ...,ap) € Tp. As C(a,1,1,...,1) = pa, we get pa € Tp. Also a’ =
trace((aE11)P) € Tp, E1y being as in Section 1.

By (i), R.H.S. of (ii) € T)p. Conversely, T, € R.H.S. of (ii) by Proposition 2.2.

Let S be a set of representatives of orbits of p-tuples of elements of {c1, ¢z, . . ., ¢} € R
and let §' be the set of such representatives in which we have at least two unequal
entries. Then, the multinomial theorem for pth powers can be written as

(Cl+52+"'+cf)p= Z C(d[,dg,...,dp)
(dy.dz,.... dp)ES
|
=Y .4+ ), Cludy....dp). (1)
Jj=1 (dy.dz....dp) €S’

Hence Z‘:.=1 d}p =(1+c+-+ c;)P ‘“):(d,,dz....,d,,)eS’C(dl'dZ' s ,dp). Now,

_C(d1,a, .- -+ dp) = C(—d1, dp...-» ;). Thus, S GE= (CIRNGESSEE G

Z(dl.dz.....dp)eS’C(_dl' dy, ..., dp). Hence using (ii), we get (iii).

From (ii) and Proposition 2.1, Tp is a subset of the set of sums of commutators and pth
powers modulo pR. Conversely, [a,b] =ab—ba=a.11---1.b+11.--- .1 .ba+

p-2 p-2
11---1.bal+---+ball---1—pba=Clal,...,1,b) € Tp by (ii.
—3 p—2

N(J)Dw, using (iii) and Proposition 2.1, T, € R.H.S of (v). By (iv), R.H.S. of (v) € Tp.
This follows from Theorem A using (iv) and (v).
We have [a,b] = ab — ba = (a+ b)> + a*> + b* modulo 2R. Hence by (iv) T2 =
{Z]l—z, c} + 21| ¢j,r € R,1 > 1}. So using (vi) for p = 2 we get (vii). See also ([8],
Theorem 3.9).

|

Note: Tp = Ty is independent of nforn = p = 2.
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Corollary 2.1 (Richman, [|5], Proposition 4.2): Letn > p = 2,p prime and R be a com-
mutative ring with unity. A € M,(R) is a sum of pth powers if and only if trace(A) is a pth
power modulo pR.

Proof: Since R is a commutative ring with unity, every commutator is zero. Now use (vi)
of Theorem 2.1.

In the case of pth powers, we required to show in our proof that a cyclic sum
C(ay, a3, - . .,ap) is in Tp. For this, we showed that C(ay,42,...,4p) = trace(FP), where F
isap x p matrix. Because of this our proof required n > p. We shall see in the next section
that for fourth powers we can make use of the four entries in a 2 X 2 matrix to show that
C(a, b, c,d) € Ty. This will give us a criterion for A € M, (R) to be a sum of fourth powers
forn > 2. |

3. Matrices as sums of fourth powers

The following theorem gives a non-commutative version of Theorem 6.3 in [6].

Theorem 2: Let n > 2 be an integer and let Ty = Ty, be the set of those elements of R that
can be expressed as sums of traces of fourth powers of n x n matrices over R. Fora, b,c,d € R,
let C(a, b, ¢,d) = abcd + beda + cdab + dabe and D(a, b) = abab 4+ baba. Then

(i) Fora,b,c,d € R,C(a,b,c,d) € Ty. Also 4a,a’,2a?, [a, b], D(a, b) € T;.
(11) ;]-4 }: {Zq=1 C(ajl bj‘: ij d]) + Z;:] D(ejnf}) '*' Z’:]_ g]‘l iaj) bj) Cj) d}: e]aj:pg:, E R‘ q‘ t;
> 1L
(i) Ty ={TL,(ajb; — bjaj) + Z,'-=1 ¢t +23 ;. df +4rlapbj ¢ dj € Rog Lt = 1),
(iv) A matrix A € M,(R) is a sum of fourth powers if and only if trace(A) is a sum of fourth
powers and 2(sum of squares) and commutators modulo 4R.
(v) A matrix A in M,(R) is a sum of fourth powers if and only if trace(A) = xg + lel +
4x,+ a sum of commutators where Xo, X1, X3 € R.

Proof: (i) For the 2 x 2 matrix E:j and the zero matrix O,_; of order n—2, let, for
a,b,c,d € R,

a b a —b 0 b
=) 2= ) m= T
0 b 0 a 0 ¢

”"z(d o)‘ st(a 0)' ”Gz(c 0)'

We have, tracey i, N} = [a?+ C(a,a,b,d) + C(b,c.c.d) + D(b,d) + C(a, b, ¢,
d) + '] + [a* — C(a,a,b,d) + D(b,d)] + [—C(b, ¢, c,d) + D(b,d) + '] + D(b,d) =
2at +2¢t +4D(b, d) + Cla, b, ¢,d) = traceNg‘ + trace Ng + 4D(b,d) +C(a, b, ¢, d).

Hence C(a, b, ¢, d) = trace Zf;l N} modulo 4R =trace Z?=1(N; @ 0y,—3)* modulo
4R,s0 C(a, b,c,d) € Ty4. Also C(a, 1,1,1) = 4a,hence 4a € Ty. For Ej; asin Section 1,
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a* = trace(aE;)* € Ty. Also
2a* = trace((E|, + aEj)) ® 0,-2)* € Ty

Since [a,b]=a-1-1-b+1:1-b-a+1-b-a-1+b-1-1-a—4ba, so [a.b] €
Ty. Also D(a,b) = [a, bab) + 2baba. Now {a, bab] € Ty as it is a commutator and
2baba = 2(ba)* is in Ty. Hence D(a, b) € T.

(i) From (i), C(a}, bj, cj,dj) € T, also g € Ta. Thus, every element of R.H.S. of (ii) €
T4. Conversely, for A € M, (R), trace of A? is sum of fourth powers of diagonal entries
and entries of the type C(a, b, ¢,d) and D(e, f), so Ty € R.H.S of (ii).

(iii) By (i), [a,b] € Ty. Also by (i) every term in the elements of R.H.S. of (iii)e T4, so
R.H.S. of (iii)€ T4 and conversely by (ii) T4 € R.H.S. of (iii).

(iv) A matrix A € M,,(R) is a sum of fourth powers if and only if trace of A is a sum of
traces of fourth powers of matrices in M, (R) if and only if; by (iii), trace(A) is a sum
of fourth powers and 2(sum of squares) and commutators modulo 4R.

(v) By (iv), A in M,(R) is sum of fourth powers if and only if trace(A) is a sum
of fourth powers and 2(sum of squares) and sum of commutators modulo 4R.
Now consider a* + b* = (a -+ b)! — (a®b + a?ba + aba® + ba®) — (ab%a + b2a® +
ba’b + a®b?) — (b2ab + bab® + ab® + b3a) — (baba +- abab) = (a + b)i— cyclic
sums —[b, aba] + 2(ab)?. Since every cyclic sum is a sum of commutators modulo
4R, we get a' + b* = (a + b)* + 2(ab)?+ a sum of commutators modulo 4R. Also
a® + b? = (a + b)* + [a, b] + 2ba. Using this repeatedly, we get the result.

[ |

Note: Ty is independent of n for n > 2.

Corollary 3.1 (Katre-Garge, [[6], Theorem 6.3]): If R is a commutative ring with unity,
then A in My (R) is a sum of fourth powers if and only if trace(A) =x3 + Zx% + 4x; for some
X0, X1,X2 € R.

Proof: Since R is commutative, all commutators are zero, so the result follows from (v) of
Theorem 2. 2]

We note the following relation between trace(M?) and trace M, for g prime.

Proposition 3.1: Let R be a ring, q prime. For M € Mp(R), trace M1 = (trace M) 4+ a sum
of commutators modulo qR.

Proof: Let M = (aj), then lrace(Mq)=Z[5jl.jz...._qu,1 @)y, Ajogs * * * gy - 1E all the j; are
equal, we get a gth power and if at least two of jj,j3,...,j; are unequal, g being a
prime, there are g distinct g-tuples obtained from jy,j2,. .., jg by a cyclic change. Thus,
trace(M1) :a‘?] + agz + .0 agq + cyclic sums = (aj) + azz + < - - + agq)? +a sum of
commutators modulo gR by (1) and Proposition 2.1. Hence trace(M4) = (traceM)4 + sum
of commutators modulo gR. L]
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Lemma 3.1: For« € R the following are equivalent:

(i) « is a sum of cubes and commutators modulo 3K.
(i) « is a sum of a cube and commutators modulo 3R.

Proof: (ii) implies (i) is clear.
By Equation (1), for p = 3, Z}:] cf — (Z}"=| ) — Y@ drdoes Cldida.dy). Now
—C(dy. d3, d3) = C(—d,, d5, d3), hence the result follows from Proposition 2.1. |

Using this, we get the following corollary.

Corollary 3.2: For n > 2, a matrix A in Mu(R) is a sum of cubes if and only if trace (A) is
a sum of a cube and commutators modulo 3R.

Proof: The proof follows from ([8], Theorem 3.13 (iv)) and Lemma 3.1. B

Remark 3.1: The results in Theorem 2.1 and Corollary 2.1 are for n X n matrices as sums
of pth powers, p prime, when n > p > 2. The problem remains forp > n > 2, i.e. we expect
to get the result for all n > 2. For p = 3, this is handled in (6] and [8] for the commuta-
tive and non-commutative set up, respectively, and for p = 5, 7 it is done in [9] in the
commutative set up. The problem is open for the remaining values of p.
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